Изменить размер шрифта - +
Неудивительно, что химики и физики не замечали столь малых изменений, пока не стали искать их специально.

С другой стороны, если бы целые граммы массы можно было полностью перевести в энергию, эта обширная концентрация произведенной энергии имела бы огромное действие. В части III будут перечислены шаги, по которым постепенно стало понятным, как это сделать. В результате этого появились атомные бомбы, угрожающие уничтожить все человечество, и атомные реакторы, дающие человечеству новую надежду на будущее.

Еще уравнение 7.5 предлагает первое удовлетворительное объяснение того, откуда берут энергию Солнце и другие звезды. Для того чтобы излучать столько энергии, сколько оно излучает, Солнце должно терять 4 600 000 тонн массы ежесекундно. Это довольно много по человеческим меркам, но незначительно для Солнца. Такими темпами оно может излучать практически неизменно еще миллиарды лет.

Формула Эйнштейна, e = mc<sup>2</sup>, как вы видите, полностью происходит из допущения о постоянстве измеряемой скорости света, и само наличие атомных бомб является страшным свидетельством верности специальной теории относительности. Неудивительно, что из всех физических формул e = mc<sup>2</sup> получила наибольшую известность среди населения, не имеющего отношения к физике.

 

 

Относительность времени

 

Эйнштейн пошел еще дальше в своих выводах из своих же допущений и вышел за рамки рассуждений Лоренца — Фитцджеральда о длине и массе, подойдя к обсуждению времени.

Время всегда измеряется посредством некоего ровного периодического движения: вращения Земли, капанья воды, ударов метронома, колебаний маятника, лаже вибраций атома в молекуле. Однако перемены в длине и массе при возрастании скорости неизбежно должны привести к замедлению любого периодического движения. Следовательно, время должно измеряться, как протекающее все медленнее по мере возрастания скорости относительно наблюдателя.

И вновь нам потребуется коэффициент Фитцджеральда. Так, промежуток времени (t), наблюдаемый на теле, движущемся с данной скоростью относительно промежутка времени в покое (t<sub>0</sub>), вычисляется так:

 

На скорости в 260 000 километров в секунду относительно наблюдателя t будет равным t<sub>0</sub>/2. Другими словами, потребуется час времени наблюдателя на то, чтобы пронаблюдать, как на движущемся объекте проходит полчаса. То есть если на часах наблюдателя было 1.00 и на часах на движущемся объекте было 1.00, то через час на часах наблюдателя будет 2.00, а на часах на движущемся объекте будет только 1.30.

На скорости, равной скорости света, t будет равно 0. Следовательно, для того чтобы соответствовать любому промежутку часов наблюдателя, часам движущегося объекта потребуется вечность. Насколько наблюдатель сможет заметить, часы на движущемся объекте всегда будут показывать 1.00; время на объекте застынет. Это замедление времени в зависимости от движения называется растяжением времени.

Такое положение дел кажется странным, но это было проверено на определенных короткоживущих субатомных частицах. Двигаясь медленно, они распадались за определенное фиксированное время. Двигаясь же очень быстро, они продолжали существовать значительно дольше, прежде чем распадались. Естественно сделать вывод, что мы наблюдали замедление времени для быстро движущихся частиц. Они все еще распадаются через, скажем, одну миллионную секунды, но для нас эта миллионная секунды растягивается из-за того, что частица быстро движется.

Как и в случае с длиной и массой, это изменение времени является только изменением измеряемой величины (пока мы остаемся верными принципам специальной теории) и изменяется вместе с наблюдателем.

Вернемся к примеру, к пролетающим друг мимо друга космическим кораблям Х и Y. Люди на корабле Х, видя, как мимо них пролетает корабль Y со скоростью 260 000 километров в секунду, и наблюдая маятниковые часы на борту корабля Y, будут видеть, что эти часы отбивают секунду за две секунды времени.

Быстрый переход