Изменить размер шрифта - +
На подлодках мало места, даже на громадинах вроде вот этой. Удалось добиться предельной скорости примерно в десять узлов, а это слишком мало, несмотря на то что при использовании такой установки почти полностью исчезали кавитационные шумы.

– Кавитационные шумы?

– Когда гребной винт с большой скоростью вращается в водной среде, позади задней кромки лопасти образуется участок пониженного давления. При этом часть воды испаряется, превращаясь в массу воздушных пузырьков. Они быстро исчезают под давлением воды, вода рвётся на их место и с силой бьёт по лопастям гребного винта. Это приводит к нескольким нежелательным последствиям. Во‑первых, увеличивается шум, а подводники всячески стараются избегать его. Далее, кавитация вызывает вибрацию, что тоже крайне вредно. На старых пассажирских лайнерах, например, вибрация в районе кормы порой доходила до нескольких дюймов. Требуются колоссальные силы, чтобы заставить вибрировать корабль водоизмещением в пятьдесят тысяч тонн! Такие силы ведут к преждевременному разрушению корпуса. Наконец, многократно повторяющиеся гидравлические удары приводят к интенсивному износу лопастей. Большие гребные винты выдерживают всего несколько лет эксплуатации. Вот почему в прошлом их устанавливали на втулках осей, вместо того чтобы отливать как единое целое. Вибрация мешает главным образом надводным кораблям, и в конце концов удалось избежать разрушения винтов путём совершенствования технологии отливки. Так вот, туннельная движительная система позволяет избежать кавитации. Вернее, кавитация по‑прежнему возникает, но шум от неё почти полностью поглощается в туннеле. Это большое достижение. Проблема, однако, заключается в том, что невозможно заставить подлодку развить высокую скорость без значительного увеличения размеров туннеля, а это практически неосуществимо. Пока одна исследовательская группа занималась туннельным движителем, другая работала над совершенствованием формы гребного винта. Сегодня винт подводной лодки очень велик и потому способен придавать ей высокую скорость при малом количестве оборотов. При уменьшении числа оборотов гребного винта кавитация исчезает. Кроме того, кавитация уменьшается с глубиной погружения. На глубине в несколько сотен футов давление воды препятствует образованию воздушных пузырьков.

– Тогда почему бы русским просто не скопировать форму нашего гребного винта?

– По‑видимому, по нескольким причинам. Форма винта должна соответствовать определённым очертаниям корпуса подлодки и работе двигательной установки, так что копирование не станет для них автоматическим решением проблемы. К тому же значительная часть проектирования все ещё осуществляется эмпирическим путём, все тот же метод проб и ошибок. Проектирование формы гребного винта намного труднее, чем, например, проектирование профиля крыла самолёта, потому что поперечное сечение лопасти резко меняется от одной точки к другой. Кроме того, думаю, ещё одной причиной является то, что их металлургическая технология отстаёт от нашей – вот почему реактивные и ракетные двигатели русских менее эффективны, чем американские. Поэтому в новых проектах огромное внимание уделяется высокопрочным сплавам. Это узкая область, и я тут могу говорить только в общих чертах.

– Итак, по твоему мнению, речь идёт о бесшумной движительной системе, способной развивать скорость не выше десяти узлов? – Райану хотелось уяснить все как можно точнее.

– Это приблизительная цифра. Тут не обойтись без компьютерного моделирования, чтобы получить более точные данные. Не исключено, что материалы на этот счёт все ещё хранятся где‑то в лаборатории Тейлора. – Тайлер имел в виду исследовательскую лабораторию Управления морских систем на северном берегу реки Северн. – Вероятно, эти данные до сих пор остаются секретными, и мне придётся отнестись к ним весьма критически.

– Почему?

– Эти исследования проводились двадцать лет назад.

Быстрый переход