Более тонкий момент: если процесс завершается, это означает, что обе стороны первоначального прямоугольника нацело делятся на одно и то же число – сторону последнего изъятого квадрата. Иными словами, отношение его сторон имеет форму p/q, где p и q – целые. Что делает его рациональным числом.
Это общая идея: если процесс деления на квадраты рано или поздно прекращается, значит, отношение сторон прямоугольника выражается рациональным числом. Более того, обратное тоже верно: если отношение сторон прямоугольника рационально, каракули рано или поздно закончатся. Так что «конечные» каракули в точности соответствуют «рациональным прямоугольникам».
Чтобы понять почему, взглянем на числа повнимательнее. По существу, рисунок сообщает нам следующее:
17 – 5 = 12;
12 – 5 = 7;
7 – 5 = 2.
После этого у нас остается прямоугольник 5 × 2 и пора переходить к среднему квадрату:
5 – 2 = 3;
3 – 2 = 1.
Остался прямоугольник 2 × 1, пора переходить к маленькому квадратику:
2 – 1 = 1;
1 – 1 = 0.
Стоп! И дело рано или поздно должно дойти до остановки, потому что все задействованные целые числа положительны и с каждым шагом они делаются все меньше и меньше. Так и должно быть, ведь мы каждый раз либо вычитаем из них что-то, либо оставляем, как есть. А последовательность положительных целых чисел не может уменьшаться до бесконечности. Если вы, к примеру, начнете с миллиона и будете все время уменьшать, то вам придется остановиться не более чем через миллион шагов.
Короче говоря, каракули сообщают нам вот что:
при делении 17 на 5 получается 3 с остатком 2;
при делении 5 на 2 получается 2 с остатком 1;
2 делится на 1 нацело с нулевым остатком,
а процесс останавливается, как только остаток становится равным нулю.
Евклид использовал подобные каракули для решения одной арифметической задачи: поиска наибольшего общего делителя для двух заданных целых чисел. Наибольший общий делитель – это наибольшее целое число, на которое оба заданных числа делятся нацело; его часто обозначают аббревиатурой НОД. К примеру, для чисел 4500 и 840 НОД равен 120.
Меня в школе учили искать НОД таким способом: разложить заданные числа на простые множители и посмотреть, какие множители у них окажутся общими. К примеру, пусть нам надо найти НОД чисел 68 и 20.
Раскладываем то и другое на простые множители:
68 = 2²× 17; 20 = 2²× 5.
НОД равен 2² = 4.
Применимость этого метода ограничена тем, что числа должны быть достаточно небольшими, чтобы их можно было быстро разложить на простые множители. Для более крупных чисел он совершенно неэффективен. Древние греки знали более эффективный способ – процедуру, которой они дали забавное название антифарезис. В данном случае ее применение выглядит так:
68 делим на 20, получаем 3 с остатком 8;
20 делим на 8, получаем 2 с остатком 4;
8 делим на 4, получаем 2 ровно.
Стоп!
Это тот же расчет, что мы проделали для 17 и 5, но теперь все числа вчетверо больше (но делятся они друг на друга столько же раз). Если вы расчертите прямоугольник 68 × 20 каракулями, то картинка получится та же, что и в прошлый раз, только последний маленький квадратик будет иметь размер 4 × 4, а не 1 × 1.
Техническое название этого метода – алгоритм Евклида. Вообще, алгоритм – это рецепт для расчета. Евклид поместил такой рецепт в свои «Начала» и использовал его в качестве основы для теории простых чисел. |